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ABSTRACT

A gap exists between virtual reality (VR) software platforms
designed for optimum hardware abstraction and cluster sup-
port, and those designed for efficient content authoring and ex-
ploration of interaction techniques through prototyping. This
paper describes VR Jugglua, a high-level virtual reality ap-
plication framework based on combining Lua, a dynamic,
interpreted language designed for embedding and extension,
with VR Juggler and OpenSceneGraph. This work allows
fully-featured immersive applications to be written entirely in
Lua, and also supports the embedding of the Lua engine in
C++ applications. Like native C++ VR Juggler applications,
VR Jugglua-based applications run successfully on systems
ranging from a single desktop machine to a 49-node clus-
ter. The osglua introspection-based bindings facilitate scene-
graph manipulation from Lua code, while bindings created
using the Luabind template meta-programming library con-
nect VR Juggler functionality. A thread-safe run buffer al-
lows new Lua code to be passed to the interpreter during run
time, supporting interactive creation of scene-graph structures.
It has been successfully used in an immersive application im-
plementing two different navigation techniques entirely in Lua
and a physically-based virtual assembly simulation where C++
code handles physics computations and Lua code handles all
display and configuration.

Keywords: Virtual reality, software tools, human-computer
interaction, C++, Lua, interactivity.
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A variety of software frameworks for creating interactive vir-
tual reality (VR) applications exist. Each framework pro-
vides some subset of the following features: operating system
portability layer, input device abstraction, display view-port
configuration, VR system simulation, cluster support, three-
dimensional (3D) scene data structures, event system, and
scripting. Frameworks that emphasize the systems level pro-
vide little or no higher-level content authoring support. Con-
versely, frameworks that explore the experience of content cre-
ation generally fall short in system independence and compat-
ibility with complex or high-end virtual reality systems. This
gap limits the ability of experience designers and researchers
to both develop real-time interactive environments using high-
level constructs and run their environments on a broad range
of VR computing systems.

This research builds upon existing mature software to pro-
duce a framework supporting rapid development and itera-
tion of virtual environments (VEs) with the potential to run
on the broadest possible range of VR systems. VR Juggler
was selected as the basis for this research. The VR Juggler
open source virtual reality software platform [8] supports a
broad range of VR systems, including a 49-node cluster that
poses a difficult challenge for other systems, and supports
Windows, Mac, and Linux. The dynamically-typed Lua pro-
gramming language [17, 16] was selected for integration both
as a scripting language supporting C++ applications and as a
fully-capable language for building standalone immersive ap-
plications. Lua’s clear and minimal syntax, ease-of-use for
end-user programmers, and ease of interoperability with C++
supported this selection.

The VR JugglLua framework supports the same range of VR
systems as its VR Juggler core. It uses the OpenSceneGraph'
graphics library to provide scene organization, model loading,
and rendering support. Using VR Jugglua, VR applications
can be written entirely in Lua, building from the base level of
the VR Juggler kernel frame loop. Paradigms for interactive
application design can be rapidly implemented in Lua and used
to provide a higher level application base, which is a current
area of research. Also, applications can be written using the
VR Jugglua C++ API, applying the Lua scripting engine in
any capacity from simple configuration to management of all
audio-visual output.

The rest of this paper is structured as follows: Section 2
discusses background and related work. Section 3 discusses
the specifics of the VR Jugglua design and implementation,
including use and extension of existing software, as well as
the potential of this system to streamline VE implementation
and support research into paradigms for immersive interaction.
Section 4 describes some applications built on VR Jugglua
that showcase different aspects of its feature set, and Section 5
presents conclusions and future work.

'http://www.openscenegraph.org/



2 BACKGROUND

A wide variety of software frameworks for building virtual re-
ality applications have been developed. The CAVE Library
initially developed for use with the CAVE Automated Vir-
tual Environment [9] is an example of early work in the sys-
tems category of virtual reality frameworks. It has evolved into
a commercial solution integrating clustering support and fo-
cusing on multi-screen application development. VR Juggler
introduced a highly modular architecture for VR applications
to provide a “virtual platform” for development and execution
on diverse systems [8, 7]. Later development extended its use
from high-end graphics systems to commodity computer clus-
ters [1, 7]. The FlowVR platform was developed based on ex-
perience in using VR Juggler in a clustered environment, and
emphasizes a data-flow model for distributed real-time inter-
active computation with high modularity [3, 2]. The Syzygy
system presents multiple frameworks for VR application de-
velopment, and was developed with an explicit focus on clus-
tered execution [21].

Other frameworks focus more on the content authoring ex-
perience, often integrating an interpreted scripting language
for rapid development. Colosseum3D integrates OpenScene-
Graph, physics capabilities, and audio rendering, and com-
bines the use of C++, a custom object-description format, and
Lua scripting [5]. Colosseum3D generates bindings of its C++
classes using the tolua++ utility. The commercial VR author-
ing environment Virtools? integrates a custom scripting lan-
guage, VSL, for content creation. AVANGO/NG applies a
generic field and field container programming interface to a
scenegraph based on OpenSceneGraph, with Python scripting
support [18].

A programming model more closely linked to the use of an
interpreted language has also found success in creating sev-
eral varieties of immersive interactive experiences. World-
Viz Vizard® is a commercial application framework, using the
Python language with a custom integrated development en-
vironment (IDE) to create experiences rendered using Open-
SceneGraph. However, it has limited clustering support when
compared to some of the systems-focused frameworks de-
signed explicitly for distributed execution. TINT is an aug-
mented reality (AR) and mixed reality (MR) framework de-
signed to present a pure Python programming interface, with
optional interaction with C++ modules compiled for improved
performance [10]. By delegating computationally-intensive
tasks to compiled code, the bulk of applications can be written
using Python for development efficiency and still achieve in-
teractive performance. The HECTOR platform takes a similar
approach integrating compiled code and interpreted Python,
with an event-driven architecture for virtual reality applica-
tions [25].

3 SYSTEM DESIGN

This section explores the implementation of the VR JugglLua
framework starting from the foundation of existing software
and extending and continuing toward higher levels of the plat-
form. Section 3.1 discusses the base levels of existing software
used in this framework, while Section 3.2 addresses integrat-
ing these systems and presents a coherent, logical interface for
application development. Section 3.3 presents the potential
for developing increasingly clear and interactive virtual expe-
riences using VR JugglLua.

2http://www.virtools.com/
3http://www.worldviz.com/products/vizard/
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Figure 1: System diagram

As a full framework, VR Jugglua encompasses its foun-
dational software, bindings for this software to Lua, the Lua
interpreter library itself, and basic host applications. A typical
application will have only one Lua interpreter state with ac-
cess to all bindings included in VR JugglLua. A VR Jugglua
application uses both the osglLua module and the VR Juggler
bindings included in the VR Jugglua framework to access a
complete set of virtual reality functionality from Lua (Figure

D).

3.1 Foundational Software

The VR Juggler software framework is a “virtual platform”
for development of VR software that can be used on a wide
variety of VR computing systems [8]. It consists of several
components that together allow virtual reality applications to
be written in C++ and executed using various hardware con-
figurations. VR Juggler Portable Runtime (VPR) is the cross-
platform portability library supporting access to operating sys-
tem functionality like threading, networking, and serial in-
put/output: capabilities primarily used by the other VR Jug-
gler components rather than directly by framework client ap-
plications. Configuration of all components is handled by the
Juggler Configuration and Control Library (JCCL), which pro-
vides a structured method of processing XML configuration
files. The Gadgeteer component provides input device ab-
straction and dynamically-loaded hardware support, as well as
input sharing and application-specific data sharing in cluster
environments. Its uniform interfaces for device access are di-
rectly utilized by any interactive application built on VR Jug-
gler. Sonix, an optional component, provides an abstraction
layer over basic immersive audio capabilities. Its interface is
simplistic, and can be configured along with the rest of the
VR Juggler suite, so it is a suitable choice for providing entry-
level audio playback in a virtual environment based on the
VR Juggler system. Finally, the VR Juggler library provides
display management and transfers control during specific pe-
riods of the frame loop to application objects. Application ob-
jects are the highest-level of content authoring interface pre-



sented by VR Juggler. Specializations of the base application
object are included that support using scene-graph libraries,
including OpenSceneGraph and OpenSG [20]. The VR Jug-
gler kernel, however, is intentionally independent of any par-
ticular scene system, and can even support DirectX graphic
rendering in addition to OpenGL and OpenGL-based scene-
graphs.

3.1.1 Binding to Lua

The Lua language is a high-performance language designed
for embedding and extension [17, 16]. The Lua language must
always be tied to a host application. A minimal host applica-
tion that presents a basic Read-Eval-Print loop (REPL) [12, 4]
as well as script execution is sufficient, and one such applica-
tion is included with the standard Lua implementation. Lua
is coded in the platform-independent subset of C that is also
valid C++, and thus presents a C-centric application program-
ming interface (API). The latest stable release of Lua, version
5.1.4, is included in the VR JugglLua source tree and built into
a static library during the software build. It is compiled as C++
to support exceptions at all levels of the software stack.

On top of Lua, the Luabind* library provides an intuitive
method of wrapping C++ classes, methods, and functions for
access from Lua. It uses template meta-programming tech-
niques to generate appropriate Lua C API calls for binding at
compile-time, which allows it to automatically deduce func-
tion signatures in most cases. This distinguishes Luabind from
some other wrapper generator systems, such as SWIG [6] and
tolua++, which require a separate step before compilation to
process either unmodified header files or interface files resem-
bling headers. VR Jugglua uses Luabind to create bindings
to VR Juggler components. These bindings function like any
other Lua module, extending the functionality of any inter-
preter state in which they are loaded.

3.1.2 OpenSceneGraph and osglLua

OpenSceneGraph (OSG) was selected as the graphics subsys-
tem of VR Jugglua. It is a mature scene-graph, supported
in VR Juggler, with good interoperability across platforms
and import plug-ins for a wide variety of image and model
file formats. Importantly, there exists reasonably up-to-date
bindings for OpenSceneGraph to Lua, in a package called
osgLua®. Rather than manually creating bindings for all of
OpenSceneGraph, or preprocessing the OSG headers, osgLua
uses the osglntrospection library to provide access to nearly all
OSG classes. As a part of OSG 2.8.x, osglntrospection loads
wrapper dynamic libraries generated automatically from the
source, and allows reflection, type instantiation, property ac-
cess, and method calling generically with arbitrary OSG data
structures. By dealing only with osglntrospection types, val-
ues, and methods, rather than statically binding to specific
types and methods, osglua is able to avoid falling behind up-
stream OSG development and offer nearly complete coverage
of the library’s capabilities. Though public development of
osglua seems to have stalled in late 2007, this introspection-
based approach allows it to work fully on the latest stable
OpenSceneGraph 2.8.3 with only minor updates.
Improvements to osgl.ua were made while developing the
VR Jugglua software framework. The use of NodeVisi-
tors and enum data-types from Lua was fixed, improving the

“http://www.rasterbar.com/products/luabind.
html
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amount of OSG functionality usable from Lua. Direct ac-
cess to object properties without using set/get functions has
also been added, providing a more natural and Lua-like inter-
face. Work on VR Jugglua also extended the introspection-
based binding with methods that recognize the vector and ma-
trix data-types, selectively defining Lua metatable methods for
these values to allow the direct use of the normal math and
comparison operators in Lua code.

3.1.3 Connecting osglLua and Luabind

The distinct representations of Luabind-wrapped objects and
the osgLua objects presented a challenge for VR Jugglua im-
plementation. A key insight is that once osglLua is loaded,
OSG types can effectively be considered “native types” in Lua.
Luabind provides a template-based system allowing seamless
conversion between C++ string types and Lua strings, C inte-
ger and floating point types and Lua numbers, and so on. Lu-
abind has a public native_converter_base interface to
allow developers to provide similar converters for their own
specialized classes wrapping these basic data-types.

OpenSceneGraph types can be divided into two groups:
reference types, which are always allocated on the heap and
passed by pointer, and value types, which may be allocated
on the stack. Templated subclasses of the Luabind native con-
verter template base class were made to handle these two cate-
gories of datatypes. This approach results in the need for only
a few-line class to specify the type name for each OSG type
that is involved in the Luabind-wrapped method. C preproces-
sor macros were employed to reduce this to a single line per
OpenSceneGraph type. When VR Jugglua is compiled, it in-
vokes the macros for the common OSG types that it uses. If
a client application written in C++ wishes to bind functions to
Lua and requires support for additional OSG types in the bind-
ing, the header can be included and the preprocessor macros
can be invoked for any available type. This solution allows
OSG types to be passed seamlessly between Lua and Luabind-
bound C++ code.

3.2 Programming Interface

The approach taken to binding the VR Juggler components to
Lua was to keep the interface simple and allow the most com-
mon use cases to be written entirely in Lua. From the applica-
tion’s point of view, interaction with the VR Juggler kernel is
limited to specifying the jconf configuration files, and starting
and stopping the application thread. In the C++ API, all kernel
interactions take place with the singleton [13] instance of the
kernel. In the Lua binding, then, the singleton kernel instance
is implied, and small free functions were bound that look up
the singleton pointer and call the method.

Access to device input takes place through a variety of Gad-
geteer device interface classes. These classes were bound
one-to-one, but with slight modifications. The need to sep-
arately call an init function with the name of the device
alias, mandated in C++ by the smart-pointer pattern imple-
mented by these device interfaces, was eliminated in favor of
a parameter to the constructor. Getter methods are used in
the C++ interface, while in Lua, the input device data can be
easily presented as directly-accessible properties. VR Juggler
uses the GMTL matrix and vector math template library’ that,
while suiting the purposes of VR Juggler applications without
a scene-graph system, does not directly inter-operate with the
equivalent types in OpenSceneGraph. The Lua binding offers
the opportunity to standardize on the OpenSceneGraph types,

"Thttp://ggt.sourceforge.net/



so positions and transforms are accessible as OSG vector and
matrix types, using meters as the units.

To provide a fully-featured VR software framework,
VR JuggLua also includes Lua bindings to the main Sonix data
types. As with the Gadgeteer device interfaces, the Lua bind-
ing exposes read-only or read-write properties instead of get-
ter/setter methods where feasible. Sounds can be configured
either externally in a jconf configuration file, or at run-time in
Lua code, and triggered by Lua code when applicable. The
ability to keep sound triggering code in Lua improves the clar-
ity of C++ simulation code by separation of concerns [15].

3.2.1 Creating Application Objects in Lua

To complete the binding of VR Juggler to Lua, a method
for creating application objects, the basic unit of the VR
application, was needed. Application objects implement a
C++ interface specifying action to take during initialization
and each of the steps in the kernel frame loop: preFrame,
latePreFrame, draw, intraFrame, and postFrame.
In applications based on VR Juggler and OpenSceneGraph,
the osgApp specialization of the application object inter-
face contains an implementation of the draw method to render
the scene-graph. Most application logic is called during the
preFrame or latePreFrame stages, which can update the
scene-graph based on newly-received input device data.

To allow an application to be written entirely in Lua, an
implementation of the osgApp interface was needed. To al-
low kernel calls to application object methods to invoke Lua
functions, an application object proxy class was created, using
a synthesis of the proxy and delegation design patterns [13].
The proxy class derives from the osgApp class. Lua code can
instantiate this application proxy and pass it a Lua table data-
structure, which serves as an application object delegate If this
table has function elements named matching the application
object interface, the application proxy will call those functions
during the appropriate phase of the kernel frame loop. Defin-
ing an application object this way is an application of latent
or “duck typing” ® as popularized by the Python programming
language [11]. If a Lua table has methods that an application
object would have, it can be considered an application object,
without requiring a particular type.

Luabind does permit binding of classes with virtual meth-
ods and the subclassing of those classes entirely in Lua, so
a strict typing approach to creating Lua application objects
is possible. However, the application proxy object approach
taken in VR Jugglua has several advantages over direct sub-
classing in Lua. For instance, the application proxy object can
perform some error checking. If an application delegate has
not been set by the time the kernel requests application object
and scene initialization, a useful error message can be pro-
duced and execution can be stopped. Similarly, if a delegate
has been set, but no forwarded calls have succeeded in an en-
tire frame loop, the application proxy can assume that a logic
error has occurred and stop execution. The application proxy
layer also allows simplifying standards to be implemented.
For example, despite display configuration taking place in me-
ters, the default projection with VR Juggler produces a foot
unit-based scaling. As VR Jugglua standardizes on meters
for positional device data, the application proxy creates a root
scaling transform node to produce an apparently meter-based
display setup for VR JugglLua applications.

80riginating in a quotation attributed to nineteenth-century poet
James Whitcomb Riley: “When I see a bird that walks like a duck and
swims like a duck and quacks like a duck, I call that bird a duck.”

3.2.2 Lua Run Buffer

The elements already discussed are sufficient to create a virtual
reality application entirely in Lua, with rapid development it-
eration due to Lua’s interpreted nature. However, the “don’t
call us, we’ll call you” design of VR Juggler [14] effectively
removes the interactivity produced by the basic Lua interactive
interpreter. Once the kernel is started, any attempt to interpret
additional new code will likely result in concurrent threading
problems as the kernel thread and the initial thread both at-
tempt to interact with the same Lua interpreter state simulta-
neously.

In an implementation based on the VR Juggler kernel loop,
idle operation consists of a continuous event loop, rather than
a blocking input call as found in a command-line REPL-type
application. As such, a separate user interface (UI) thread is
the simplest way to implement the “read” portion of a REPL
independent from the idle loop. The UI can effectively block
waiting for the user’s input of code to evaluate. The evaluation
of a completed code subsection, however, must take place in
the idle event loop for simplicity of design and use of a single
interpreter state. The preFrame or latePreFrame step of
the kernel loop is the most logical place to evaluate new code,
since the application state at that point corresponds neatly to
a mental model of interactive execution: accessing device in-
terfaces will return the most recent data, and changes to the
graphical state are possible and will be immediately reflected
in the display in the subsequent draw step.

Based on these concepts, VR Jugglua includes a thread-
safe run buffer system supporting interactive code execution
during application runtime, illustrated in Figure 2. Code can
be added to this circular buffer at any time, and a single method
call on the buffer runs all contents, in order. This run buffer
method call is bound to Lua and can be placed in the appli-
cation delegate function corresponding to the preFrame or
latePreFrame states. An interface for an interactive GUI
console, with text-based stub, FLTK9, and Qtlo implementa-
tions, exposes this functionality to a user. Any VR JugglLua-
based application can use this GUI console as a drop-in com-
ponent, supporting code entry, display of print output from
Lua, and loading and saving of script files.

3.3 High-Level Potential

Binding of VR Juggler and associated subsystems to allow full
VR application development has benefits beyond allowing ap-
plications to be written in Lua equivalent to comparable C++
code. Exploration of the possibilities produces a range of fu-
ture research topics. In this section, two of the unique possibil-
ities afforded by the combination of Lua and VR Juggler will
be discussed. The Lua language supports syntactic sugar de-
signed for intuitive data description that can be used to provide
a higher-level interface to C++ functionality. Furthermore,
the Lua run buffer and GUI console components are building
blocks for a fully-interactive virtual reality REPL-type code
execution environment.

3.3.1  Lua Syntactic Sugar for Application Description

Lua allows rapid development of experience authoring tech-
niques, primarily due to its concise “constructor” syntax and
table data structures. The osgLua library provides a fairly di-
rect translation of the C++ API of OpenSceneGraph to Lua.
While this approach allows access to the full potential of the

Shttp://www.fltk.org/
Ohttp://gt.nokia.com/



library, it can make common tasks repetitive and unclear. For
instance, using pure osglua syntax, the following code would
be used to load a model, attach it to a transform, and attach
this transform to a root scene-graph node.

teapot = osglLua.loadObjectFile ("teapot.osg")
transform = osg.PositionAttitudeTransform/()
transform:setPosition (osg.Vec3 (1.0, 0.0, 0.0))
transform:addChild (teapot)

root:addChild (transform)

Lua allows tables, which are a data structure like asso-
ciative arrays, to be created in-line with {}, and function
calls passing a single table argument may be made sim-
pler by abbreviating functionCall ({data, data}) as
functionCall{data, data}, which is known as the
constructor syntax. Clearly-named functions designed for
constructor syntax can replace the scene-graph creation code
listed above with this simpler, yet equivalent alternative:

root:addChild(

Transform{

position = {1.0, 0.0, 0.0},
Model ("teapot.osg")

Here, Transform is a function taking some
named arguments specifying property values for a
PositionAttitudeTransform, as well as any
number of unnamed arguments corresponding to OSG
nodes to add as children. It is being called with a position
argument, as well as the results of a call to Model, a simple
wrapper around osgLua.loadObjectFile to load a
given file and report an error if the load is not successful.
The PositionAttitudeTransform node created and
returned by Transform is passed directly to the original
C++-style addChild call to connect it to the scene-graph
root. This alternate syntax more clearly indicates the values
assigned to node properties, and also directly conveys the
nesting of the model node within the transform node, an
important aspect of the scene’s organization that might be
missed in the more procedural original code.

3.3.2 Interactive Testbed Application

Applying the run buffer and GUI console, an interactive vir-
tual reality REPL was created. To serve as a testbed for scene
creation and manipulation, all details of setting up a VR Jug-
gler application are handled behind the scenes. A minimal
Lua application object provides navigation capability and runs
the code accumulated in the run buffer. An empty scene and
console are presented on startup, and user code is executed in-
teractively and apparently immediately. (A delay of at most
a frame-length does occur due to the asynchronized nature of
the GUI console and the kernel frame loop, though this is im-
perceptible.) This interactive console allows learning of syn-
tax to proceed more rapidly than the save-compile-run cycle
of C++ or even the save-run cycle of a bare Lua VR JugglLua
application. Lua errors are presented immediately in the GUI
console, and by default do not halt the execution of the ap-
plication. The user is thus encouraged to try the code again,
with modifications as errors would point out. In anecdotal ex-
perience, the console serves well to localize errors in longer,

Run buffer GUI console

Log of executed code and
text output

C++ application object or

Input box for code eniry Lua frame loop methods

Run button

adds entered code to buffer

when user clicks "Run" runs accumulated code

during each frame update

Thread-safe run buffer

Figure 2: Thread-safe run buffer for interactive execution

& SimWindow = B

Figure 3: Interactive testbed application

more complex virtual environments: if the full script does not
produce the desired results, users quickly learn to try past-
ing code incrementally. In effect, the debugging behavior of
stepping through problem code arises spontaneously as a user
works with the environment. The testbed application does not
impose any specific structure on application code developed
interactively. Executed code, interspersed with text output for-
matted as Lua comments, is logged and available for saving to
a script file or copying and pasting into a text editor.

Figure 3 shows the testbed application running on Win-
dows 7, on a desktop system in simulator mode. VR Juggler
simulator mode allows keyboard and mouse inputs to be trans-
lated into immersive device inputs, such as head and wand
position tracking and wand button presses. Though simula-
tor mode loads by default, configuration files for an immersive
VR system can also be loaded, allowing experimentation with
virtual environment design to take place in the actual hardware
system used for running completed applications. The GUI
console can either float above the windows rendering the im-
mersive display or be moved to an additional non-immersive
display.



4 EXAMPLES

Immersive applications have been successfully written using
the VR JugglLua system, both in pure Lua and in a combination
of C++ and Lua. This section will highlight a few samples of
the results achieved using VR JuggLua and the aspects of the
framework’s design that they illustrate.

4.1 Learning Virtual Reality Interactively

The interactive testbed application was applied in an unstruc-
tured undergraduate learning environment which focused on
concepts of scene-graphs and 3D virtual reality. A sample task
of scene design was assigned, with the goal of prototyping a
more sophisticated application. A reasonably-complex scene
was built from multiple models, sourced internally as well as
from the Google 3D Warehouse!!. An iterative process on typ-
ical laptop and desktop computers was observed, with rapid it-
erations of the application script tested interactively using the
testbed application. The script constructed in this way was
then launched in a single-machine two-walled immersive envi-
ronment for more thorough testing. It was ultimately demon-
strated in the C6, a six-wall high-resolution CAVE-like sys-
tem powered by a 49-node cluster. The application performed
smoothly and as designed.

4.2 Testing Navigation Techniques

In the course of a summer program for undergraduates, a sce-
nario was developed for testing navigation in a user study in
the C6 environment. An application was written, entirely in
Lua, by undergraduate and graduate students. The applica-
tion loaded sophisticated models, and supported comparison
two navigation techniques based on device input. The neces-
sary transforms and manipulations to display the externally-
sourced models were developed on desktop machines using
the interactive testbed. The navigation techniques interpreted
analog and positional data from sensors on an instrumented
real object, to provide an on-screen registered virtual version
of the object and to allow movement in a natural way. Logging
of navigation data was implemented, and a successful user
study was completed, in a limited time frame. High perfor-
mance of the application was observed, despite the use of an
interpreted language and very complex graphical model. This
is made possible due to the delegation of graphics rendering
to the C++-based OpenSceneGraph. Lua code traversed and
modified models at load time and updated transforms during
run time, but the actual rendering code in a VR Jugglua ap-
plication remains part of OpenSceneGraph.

4.3 Integrating with C++ Simulations

Research into applications of virtual reality technology to
manufacturing engineering led to the development of virtual
assembly simulations with haptic force-feedback capability.
The Scriptable Platform for Advanced Research and Teach-
ing in Assembly (SPARTA) is the successor to the System for
Haptic Assembly and Realistic Prototyping (SHARP) as devel-
oped by Seth ef al.[22, 23, 24]. SPARTA is an application built
on VR Jugglua in which C++ code performs physically-based
simulation of interactions between part models, rendering cor-
responding haptic force feedback to haptic devices such as the
PHANTOM Omni® by Sensable™ and the Virtuose™ 6D35-
45 by Haption at a rate of 1000 Hz.

Classes in SPARTA representing the physics simulation,
physical bodies, and manipulator devices are bound for Lua

Uhttp://sketchup.google.com/3dwarehouse/

Figure 4: SPARTA in simulator mode showing Lua console

access by Luabind. Lua code executed using the GUI con-
sole and run buffer is used to configure interaction devices and
techniques, load parts to interact with, and start the physics
simulation. Lua scripts performing these tasks are used in
place of configuration files, offering extended functionality for
complex configurations and eliminating the task of writing a
configuration file parser. Scripts are either loaded from the
command line, or interactively using the GUI console, which
has been included as a “drop-in” component and allows in-
cremental development of SPARTA configurations akin to the
incremental development of VR JugglLua applications enabled
by the interactive testbed application. Figure 4 shows SPARTA
running in simulator mode with the GUI console visible. Of
course, like all VR Jugglua applications, SPARTA can be run
in a fully-immersive mode without any code modifications.

Furthermore, while C++ code performs the physics com-
putations and high-rate simulation in SPARTA, the visual and
audio feedback is written entirely in Lua. A simple application
object delegate handles updating the positions and orientations
of models in the scene-graph based on the current simulation
state, and collision statistics are monitored by separate Lua
code to trigger appropriate sounds using the Sonix binding in
VR JugglLua.

The case of SPARTA illustrates a high-end application of
VR Jugglua: it is a sophisticated application taking advan-
tage of the VR Jugglua C++ API and binding its own internal
objects to Lua. It uses Lua code to configure the C++ core,
translate simulation state into visual and audio displays, and
provide an extension point for investigating interaction tech-
niques.

5 CONCLUSIONS AND FUTURE WORK

Through enabling applications to be written in Lua and run
on the versatile VR Juggler framework, VR JugglLua provides
a basis for exploring high-level design of virtual experiences
that are rapidly developed, yet capable of running on even the
most high-end virtual reality systems. The selection of Lua
provides opportunities for clarifying syntactic improvements
over C++, and the implementation of a thread-safe run buffer
with an interactive GUI console enables interactive REPL-like
development of virtual reality applications. Experience in us-
ing the framework has demonstrated its suitability for use in
introductory virtual reality exploration, as well as in sophisti-



cated physically-simulated interactive research applications.

Future work includes exploring the possibilities of using
Lua to create interactive experiences. This work includes the
use of Lua features such as co-routines [19] to support in-
creasingly complex environments based on procedural, rather
than frame-oriented, mental models of end-user programmers.
Research into applying Lua’s support of first-class functions
(functions as values) for interaction and action selection is an-
ticipated. Extending the run buffer across a clustered rendering
environment to permit synchronized run-time code evaluation
on high-end immersive systems will also be investigated.
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